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Abstract

Long term trends in the climate system are always partly obscured by naturally occurring interannual variability.
All else being equal, the larger the natural variability is,the less precisely one can estimate a trend in a timeseries
of data. Measurement uncertainty, though, also obscures long term trends. We derive how measurement uncertainty
and natural interannual variability interact in inhibiting the detection of climate trends using simple linear regression
and show how the interaction between the two can be used to formulate accuracy requirements for satelliteclimate
benchmark missions. We find that measurement uncertainty increases detection times but only when considered in
direct proportion to natural variability. We also find that detection times depend critically on the correlation time of
natural variability and satellite lifetime. As a consequence, requirements on satellite climate benchmark accuracy
and mission lifetime must be directly related to natural variability of the climate system and its associated correlation
times.

1. Introduction

The U.S. National Research Council, in its decadal
survey of the National Oceanic and Atmospheric Ad-
ministration (NOAA) and the National Aeronautics and
Space Administration (NASA) (National Research Coun-
cil, Committee on Earth Science and Applications from
Space 2007), has called for a new philosophy in monitor-
ing climate change from space:

Design of climate observing and monitor-
ing systems from space must ensure the
establishment of global, long-term climate
records, which are ofhigh accuracy, tested
for systematic errors on-orbit, and tied to ir-
refutable standards such as those maintained
in the U.S. by the National Institute of Stan-
dards and Technology. For societal objec-
tives that require long-term climate records,
the accuracy of core benchmark observa-
tions must be verified against absolute stan-

dardson-orbit by fundamentally independent
methods, such that the accuracy of the record
archived today can be verified by future gen-
erations. Societal objectives also require a
long-term record not susceptible to compro-
mise by interruptions in that data record.

In this note we call observations that satisfy these de-
mandsclimate benchmarks.

Climate benchmarks mark a departure from the cur-
rent paradigm of climate monitoring in which space in-
struments are assumed to be “stable”. In the stability
paradigm, the accuracy of an instrument is assumed un-
known yet unchanging. A climate data record is formed,
then, by adding offsets to each in a series of satellite in-
struments so that there is no difference between satel-
lites’ measurements during periods of overlap (National
Research Council, Committee on Climate Data Records
from NOAA Operational Satellites 2004). The result
is a timeseries of measurements with no obvious dis-
continuities. Prime examples of this paradigm are the
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records of upper air temperature established using the Mi-
crowave Soundings Units aboard the NOAA series satel-
lites (Spencer and Christy 1990). Some evidence is given
to support the stability of the MSU instruments (Spencer
and Christy 1993), but complications in bias adjustment
during periods of instrument temporal overlap—a proce-
dure which must be undertaken because the instrument
accuracy is unknown—provide the ultimate uncertainty in
the climate record established by MSU (Climate Change
Science Program 2006).

The paradigm of climate monitoring using instru-
ments traceable to international measurement standards
(National Research Council, Committee on Earth Sci-
ence and Applications from Space 2007; Ohring 2007)
calls for a different analysis technique. After calibra-
tion, every measurement obtained is known to be accu-
rate to within an uncertainty determined by the multiple
calibration pathways to the international system of units
on-board the spacecraft. No statement can nor need be
made regarding whether the uncertainty of the measure-
ments is changing or unchanging with time. Conserva-
tive error analysis requires that the worst case scenario
for error propagation be considered the relevant one: if
changing uncertainty leads to greater error in the result,
then changing uncertainty must be assumed; if unchang-
ing uncertainty leads to greater error in the result, then
unchanging uncertainty must be assumed. Ordinary lin-
ear regression is the obvious analysis method for climate
benchmark data. With a series of climate benchmarks
one obtains a timeseries of data, with or without gaps in
time, wherein each data point is accurate to within an un-
certainty established by its traceable pathways to interna-
tional standards. In the problem of detecting slowly evolv-
ing trends in the climate system, one must also consider
the shorter timescale natural fluctuations of the climate
as an additional source of uncertainty. Thus, the uncer-
tainty associated with each point in a timeseries of data
is estimated as the standard deviation of the data points
from the best fit line, and both measurement uncertainty
and natural variability contribute to that standard devia-
tion. In considering their contributions through a proper
error analysis, one arrives at minimum signal detection
times and requirements for instrument accuracy that are
dictated by nature. In this paper, we present such an error
analysis.

2. Derivation by Linear Regression

In order to arrive at an equation that can be used for
calculating a requirement for climate benchmark accu-
racy we start with standard linear regression (Williams
1959; von Storch and Zwiers 1999). Ultimately, a climate
benchmark timeseries will be used to determine whether
there are trends in the climate system. We give the solu-

tion for the trendm in anN -element timeseries of datadi

at timesti:

m =
(

N
∑

j=1

(tj − t̄)2
)

−1
N

∑

i=1

di (ti − t̄) (1)

wheret̄ is the mean of the timesti. A determination of
the slope is inevitably corrupted by natural variability of
the climate system, which adds scatter to the data away
from any fitted line. A determination of the slope is also
corrupted by measurement uncertainty, which, too, adds
scatter to the data. In data analysis one computes the
uncertainty in the estimate of the trend using the data’s
residuals. In deriving accuracy requirements for a climate
benchmark instrument, we estimate the uncertainty of a
yet-to-be measured trendm through conventional error
propagation techniques. A deviationδm to the slope esti-
mate is caused by uncertaintyδdi in the data:

δm =
(

N
∑

j=1

(tj − t̄)2
)

−1
N

∑

i=1

δdi (ti − t̄). (2)

The mean-square estimate of the uncertainty in the slope,
〈(δm)2〉, is

〈(δm)2〉 =
(

N
∑

k=1

(tk − t̄)2
)

−2
(3)

×
N

∑

i=1

N
∑

j=1

(ti − t̄)(tj − t̄)〈δdi δdj〉.

Typically in timeseries analysis, the uncertainty in the
data is understood to be completely uncorrelated, namely
that〈δdi δdj〉 = σ2δi,j whereδi,j is the Kronecker delta
function. In climate signal detection this does not hold
because there is serial correlation in the timeseries (von
Storch and Zwiers 1999).

The fluctuations of the climate system are not white
noise: they have associated length and time scales. A
temporal anomaly of the climate system is bound to last a
finite amount of time, and if that amount of time is com-
parable to or greater than the interval between data points
dt = ti+1 − ti, then the expectation value〈δdi δdj〉 takes
the following form:

〈δdi δdj〉 = σ2
var Corri−j(var) (4)

whereCorrn(var) is the correlation function of natural
variability at lag n dt in time andσ2

var is the zero-lag
variance associated with natural variability. (By natural
variability, we mean all the naturally occuring variations
internal to the climate thought to not be associated with
the response to a prescribed forcing.) A similar argument
holds for measurement uncertainty. It is very likely that
an uncertainty in measurements of a climate benchmark
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instrument lasts a finite amount of time as well, and there-
fore errors at near-adjacent instances in time may be cor-
related. This appears as an extra term in the expectation
value〈δdi δdj〉:

〈δdi δdj〉 = σ2
var Corri−j(var)

+ σ2
meas Corri−j(meas). (5)

where σmeas is the measurement uncertainty and
Corrn(meas) is its time-lagged correlation function.

We simplify the summations in Eq. 3 after inserting
Eq. 5, settingj = i + µ, and summing overµ. Except
in the immediate vicinity of the first and last elements of
the timeseries the uncertainty in the estimate of the trend
becomes

〈(δm)2〉 =
(

N
∑

k=1

(tk − t̄)2
)

−1
[

σ2
var

∞
∑

µ=−∞

Corrµ(var)

+ σ2
meas

∞
∑

µ=−∞

Corrµ(meas)
]

. (6)

The summations are exactly the normalized Fourier trans-
forms of the natural variability and of the measurement
uncertainty time-lagged covariance functions at zero fre-
quency, and so they can be rewritten in terms of correla-
tion times for the natural variabilityτvar and for the mea-
surement uncertaintyτmeas:

τvar ≡ dt

∞
∑

µ=−∞

Corrµ(var) (7)

τmeas ≡ dt
∞
∑

µ=−∞

Corrµ(meas). (8)

While infinite lags in these correlation functions are not
practically realizable, we anticipate that the only signifi-
cant lags will be no greater than a few years for decadal-
scale trend detection. To illustrate why Eqs. 7 and 8 are
meaningful time constants, consider the case of smooth-
ing of a serially uncorrelated random process. A serially
uncorrelated random process has an autocorrelation of1
at zero lag and an autocorrelation of0 otherwise. If it is
smoothed with a boxcar filter with widthT , the autocorre-
lation function becomes triangular. It is1 at zero lag and
linearly drops to0 at +T and−T lag. The summation
of that correlation function given by Eq. 7, or the inte-
gral of the autocorrelation function in lag time, is exactly
τvar = T . See Fig. 1 for an illustration.

We note for an unbroken but discretized timeseriesti
that

N
∑

i=1

(ti − t̄)2 = (dt)2(N3 − N)/12. (9)

If we assume a long timeseries (N ≫ 1), then the uncer-
tainty in the determination of the trend in the data reduces
to

〈(δm)2〉 ≃ 12 (∆t)−3
(

σ2
varτvar + σ2

measτmeas

)

(10)

where∆t = N dt is the length of the timeseries. Eq. 10
is useful both for deriving science requirements for cli-
mate benchmark missions and for estimating the signal-
to-noise ratio in detecting climate signals.

Eq. 10 bears a simple interpretation. It is obvious that
the longer the timeseries, the easier it should be to distin-
guish a trend from natural variability (and measurement
uncertainty). We call this the baseline effect. If we have
just two data separated by∆t in time, the uncertainty in
the trend determination is just the uncertainty in the mea-
surements divided by the baseline∆t. The mathematical
expression for this is that|δm| ≈ σvar/∆t, the error in the
determination of the slope is inversely proportional to the
baseline of the timeseries. Advantage is gained, though,
from the fact that a continuous timeseries offers the pos-
sibility of averaging out some of the natural variability.
We call this the averaging effect. The advantage is pro-
portional to the inverse square-root of the number ofin-
dependent measurements in the timeseries. Because fluc-
tuations associated with natural variability in the climate
system last about a correlation timeτvar, the number of
independent measurements in the timeseries is∆t/τvar.
Putting the baseline and averaging effects together, the er-
ror in the slope becomes|δm| ≈ σvar/∆t×

√

τvar/∆t in
agreement with Eq. 10.

3. Accuracy Requirements

A series of climate benchmark missions will be used
to detect trends in the climate system of any of a variety
of quantities. Before a climate benchmark is designed it
is customary to estimate the size of the trendmest. We
define the factors to be the signal-to-noise ratio of de-
tection,s ≡ mest/|δm|, and the greaters the greater the
confidence with which one can declare a measured trend
statistically different from zero. The signal-to-noise ratio
s is also the inverse of the fractional precision of the es-
timate of a trend in a timeseries of data. We estimate the
time it takes for a signal to emerge above natural variabil-
ity and measurement uncertainty with a signal-to-noise ra-
tio s (s = mest/|δm|):

∆t =
[12s2

m2
est

σ2
varτvar

]1/3

(1 + f2)1/3 (11)

where the measurement uncertainty factorf is

f2 = (σ2
measτmeas)/(σ2

varτvar). (12)

From Eq. 11 it is clear that there is a lower bound on
the time it takes to detect a signal with a prescribed level
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FIG. 1. The time constantτvar of a smoothed random process. In panel A we show a timeseries of serially uncorre-
lated, normally distributed random data with standard deviation 10 as points and the smoothed data after applying a
boxcar smoothing with width 100 as the solid curve. In panel Bwe show the autocorrelations as a function of lag for
the data points as the dashed line and for the smoothed data asthe solid line. The area under the solid line is≃ 100.
By definition, the area under the solid curve in panel B isτvar. Theoretically, the constantτvar of Eq. 7 is estimated to
be the width of the boxcar filter.

of confidence that is dictated by nature alone, and mea-
surement uncertainty amplifies that detection time only
in proportion to natural variability. The cube-root quan-
tity in square brackets in Eq. 11 gives the minimum time
to detect a climate signal, as can be easily seen by set-
ting the measurement uncertainty, and hencef , to zero.
One consequence of a full consideration of the correlation
time constant of natural variability is that detection time
remains unchanged after smoothing a timeseries of data.
By smoothing data, one can reduce the departures (σvar)
from a fitted line by the inverse square-root of the smooth-
ing interval, but the effective increase in the time constant
of the departures (τvar as defined by Eq. 7) from the fitted
line cancels the reduction in departures when considering
the two in combination through the productσ2

varτvar.
Secondly, from Eq. 11 it is also clear that measure-

ment uncertainty amplifies the time to detection only
when considered in direct relation to natural variability
(through the factorf ). If one requires thatf < 0.5, then
the time to detection is only increased by< 8% over what
nature allows. If one assumes that the correlation time
constant of the measurement uncertainty is the lifetime of
the climate benchmark instrument in question, then the
accuracy requirement for the mission must be inversely
proportional to the square-root of the instrument lifetime.
The constant of proportionalityσvar

√
τvar is dictated by

nature in the form of natural variability of the climate sys-
tem.

Thirdly, from Eq. 11 it is also clear that detection time
is decreased when the time constant associated with mea-

surement uncertainty is decreased. The time constant as-
sociated with measurement uncertaintyτmeas is difficult
to quantify, so we use the “worst case scenario” concept
described in the introduction to argue for its magnitude.
In short, a data set can be no more credible (or accurate)
than one can experimentally demonstrate. If an instru-
ment is designed to be traceable to international standards
(Pollock et al. 2003) with uncertaintyσmeas, it is possible
that the residual difference between truth and measure-
ment can wander within the limits ofσmeas during the
lifetime of the mission, and this would certainly aid the
cause of detection by effectively decreasing the product
σ2

measτmeas (see Eqs. 11 and 12). It is impossible, though,
to experimentally demonstrate that the residual difference
between truth and measurement wanders on timescales
shorter than the mission lifetime because no measurement
can be made with an uncertainty smaller thanσmeas. On
the other hand, if the residual difference between truth and
calibrated measurement presists for the duration of a satel-
lite mission, then the uncertainty in the determation of the
estimated trend is greatly enhanced through the product
σ2

measτmeas. It is impossible to experimentally demon-
strate that the residual difference between truth and mea-
surement remains constant over an instrument’s lifetime,
but because the latter case is the worst case scenario which
one cannot disprove experimentally, we argue thatτmeas

must be the mission lifetime.
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TABLE 1. Dependence of signal detection time on measurement uncertainty (σmeas) and instrument lifetime (τmeas).
We assume an interannual variability of 500-hPa air temperature ofσvar = 0.18 K with a correlation time constant of
τvar = 1.54 yrs and a trend ofm = 0.2 K decade−1.

Measurement uncertainty Detection time Detection time
(σmeas) (τmeas = 2 yrs) (τmeas = 6 yrs)

0.00 K 33.4 yrs 33.4 yrs
0.02 K 33.6 yrs 34.0 yrs
0.05 K 34.5 yrs 36.5 yrs
0.10 K 37.4 yrs 43.5 yrs
0.20 K 46.0 yrs 60.1 yrs
0.50 K 74.4 yrs 105.1 yrs

4. Example: Upper Air Temperature

As an example, we assume that a satellite-borne cli-
mate benchmark instrument obtains global average tem-
perature measurements centered at 500 hPa. We wish to
assess the dependence of a global warming detection time
given two possible instrument lifetimes (τmeas = 2, 6 yrs)
and an array of possible accuracy requirements for instru-
ment uncertainty (σmeas). We wish to test climate models
by constraining the sensitivity of the climate to an uncer-
tainty of 20%, so we sets = 5.

In Table 1 we gives = 5 detection times for a global
warming signal ofm = 0.2 K decade−1. We assume that
natural variability hasσvar = 0.18 K with time constant
τvar = 1.54 yrs for the global average temperature of the
500-hPa surface consistent with a realistic pre-industrial
control run of UKMO HadCM3, taken from the CMIP3
archive of climate model runs hosted by Program for Cli-
mate Model Diagnosis and Intercomparison (PCMDI).
The minimum detection time is found to be33.4 yrs. A
series of climate benchmark missions, each with a 2-yr
lifetime, clearly has shorter detection times than the series
of missions with 6-yr lifetimes. If one chooses to follow a
f = 0.5 rule for a science requirement, the detection time
becomes36.0 yrs, just2.6 yrs over the minimum, the se-
ries of 2-yr missions must have an accuracy of0.079 K,
and the series of 6-yr missions must have an accuracy of
0.046 K. (If natural variability is uncorrelated from year
to year (τvar = 1 yr), then the minimum time to detection
would be29.0 yrs.)

5. Conclusions

Using standard linear regression and error propagation
techniques, we have derived a formula that can be used
to compute accuracy requirements for a climate bench-
mark mission. The requirements relate measurement un-
certainty and instrument lifetime directly to the natural

variability of the climate and the correlation timescale of
that variability. Explicitly, those requirements are gov-
erned by Eq. 12 withf < 0.5.

We have found that more precise trend estimates are
associated with shorter instrument lifetimes given the
same measurement uncertainty. This is best understood
by a simple example. If one desires a precise trend esti-
mate over a 20-yr timeseries of data, flying 10 satellites
with a 2-yr lifetime is preferred to flying 4 satellites with
a 5-yr lifetime. The reason is that measurement uncertain-
ties associated with the satellites’ instruments can be as-
sumed to be uncorrelated and thus average out with more
satellites. In the absence of natural variability, the uncer-
tainty in trend determination from the 10-satellite time-
series will be a factor of≃

√

10/4 less than the trend
determination from the 4-satellite timeseries.

Other factors enter when establishing accuracy re-
quirements for a mission. One must decide acceptable
signal detection times given the expense involved in de-
ploying climate benchmark satellite instruments. The
minimum detection time dictated by nature must be con-
sidered. While shorter lifetimes (and hence more frequent
deployment) for satellite instruments decreases detection
times, the increase in the number of satellite instruments
will dramatically inflate the expense of a signal detection
program. On the other hand, the shorter lifetime missions
generally require less accurate instruments which are ex-
pected to be lower in cost per instrument than more accu-
rate (and longer lifetime) instruments.
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